
Recursive Computation of the Repeated Integrals 
of the Error Function 

By Walter Gautschi 

1. This paper is concerned with a special technique, originated by J. C. P. 
Miller [1, p. xvii], of computing a solution fn of a second-order difference equation 

(1.1) Yn1 + anYn + bnYn-1 = O (n = 1,2, 3, ... ) 

for n = 0(1)N, N large, in cases where (1.1) has a second solution, gn, which ul- 
timately grows much faster than fn . Straightforward use of ( 1.1) is then not ade- 
quate, since rounding errors will "activate" the second solution gn which in turn 
will eventually overshadow the desired solution fn. Miller's device consists of 
applying (1.1) in backward direction, 

(1.2) Yn-1 = -bn'(anYn + yn+1) (n = v- 1, v-2, 2 , 1; v > N), 

starting with the initial values 

(1.3) yr-i = a, yp = 0, 

where a is any real number $0. If v is taken sufficiently large the values so obtained 
turn out to be approximately proportional to fn in the range 0 ? n < N. The factor 
of proportionality may then be determined, e.g., by comparing yo with fo . 

This technique was originally devised [1] for the computation of Bessel functions 
In(x), and has since then been applied to various other Bessel functions [2], [5], 
[9], to Legendre functions [8], and to the repeated integrals of the error function* [6], 

in erfc = 2 J (t X) e-t2 dt (n = 0, 1, 2, ... ), 

(1.4) 
F1 erfc x = e 

An analogous technique for first-order difference equations is described in [4, p. 25]. 
We shall present in Section 2 a detailed description of Miller's procedure, 

paying special attention to the error term. In Section 3 we study the procedure as 
applied to the computation of the functions (1.4) and show that the process con- 
verges for any positive x, as v -- o. In Sections 4-5 estimates will be developed of 
how large v must be taken to ensure any prescribed accuracy. 

Received August 22, 1960. 
* In this notation in (n 2 0) should be interpreted as the nth power of the integral operator 

i = J so that 

iO erfc x = erfc x, in erfc x = J i-'erfc t dt (n = 1, 2, *.). 

This notation for the repeated integrals of the error function, even though not entirely satis- 
factory, has become standard. 
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2. Consider the homogeneous second-order difference equation 

(2.1) Yn+I + anYn + bnYn-i = 0 (n 1, 2, 3, ...) 

and assume that 

(2.2) bn #0 forall n ? 1. 

Let fn be the (nontrivial) solution of (2.1) to be computed for n 0(1 )N. We 
assume 

(2.3) fo 0 0. 

Let there be another solution gn of (2.1), for which 

(2.4) 0 for all n ? 0, 

and 

(2.5) lim _n 0. 
n,oo gn 

It follows readily that fn gn are linearly independent. 
Now let Yn(P)(n = 0, 1, * , v - 2; v > N) be the result of applying (2.1) in 

backward direction, starting with 

(2.6) Y(,_1 = a>, yv (at 5-? 0). 

These values, by (2.2), are well defined, and, as will presently be shown, yo0V # 0 
for v sufficiently large. Let us then define 

fo (v) (2.7) fn yO) = Yn 

We show that for any fixed n, 

(2.8) lim fn =fn. 

Moreover, 

(2.9) fn =fn gpfn 

gv fo 

It is sufficient to prove (2.9), since (2.8) then follows from (2.5). Let Yn(v) be 
extended to all n > v by means of (2.1). Then for every fixed v the sequence 
{Yn()} (n = 0, 1, 2, *..) is a solution of (2.1), and therefore representable in the 
form 

Yn(") = A(;)fn + B()gn (n ? 0). 

By (2.6), 

A^)fp_l + B( )gp-l = a, 

(2.10) ~A(Y)fP + B(P)9 = 0. 
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Certainly, A (t) z 0, since otherwise, by (2.4), A(") = B(v) = 0, which contradicts 
the first equation in (2.10). From the second equation, B( )/A(v) = -f/g,. Therefore 

Yn A() (fA + (^ n) = A(t) (fn L gn). 

If v is sufficiently large it follows because of (2.3) and (2.5) that yo(p) # 0. By (2.7), 

fo A(w (fn- gn) _ -_ gn 
fn g 

f fn - fv 
A(^) ifo go) g, fo 

which proves (2.9). 
It is convenient to define 

(2.11) fn90 (n =O 
1, 2, ), 

Pn 
g. fo 

so that Pn -O0 as n -> oo, and 

f(V) = 1 - (p/Pn ) f Pv 

The relative error of fn(j) is given by 

(2.12) fn() f fn A___ (2.12) ~ ~~~~~fn 1 p, Pn 

Th*.iemmnienfiv) a)wnlkifvz ia )Mt, & Z onAf , sa that a can be chosen 
at will. If a high-speed computer is employed it is advisable to choose a small value 
for a to guard against "overflow" in the values of yn 

3. Now let 

(3.1) i'erfc x, X 70 (n = 0,1,2, * *). 

Then fn is a solution of 

x 1 n 12)3 . (3.2) Yn+1 + - Yn - 2n -= (n=1,2,3,*) 

as is readily verified by writing 

in erf 2 (1 | (t _ X)n-1 te-2 dt _ x A (t X)n-1 dt 
ierfecx=- - 

\l (-) dt- j ( ) 

and evaluating the first integral by parts. A second solution of (3.2) is given by 

(3.3) gn = ( 1) i 'erfc ( -x) (n = 0,1,2, * ). 

It is clear that the assumptions (2.2)-(2.4) are satisfied in this case. We shall now 
verify (2.5), i.e. 

(3.4) lim in erfe x 0 (x > O). n -,oierfe (-x) -0( ) 
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This then will prove the convergence of the procedure in Section 2, as applied to 
(3.2). 

We recall that the repeated integrals of the error function are related to the 
parabolic cylinder functions D,(x) by [7, p. 76] 

in erfc x = ___ D_n_1 (x 

It is furthermore known [3, p. 123] that 

D-n-1 z n) = 27__ + [1 + 0 ( )] (n -o, z bounded). 
2 8l/r (n + 1) / 

Therefore we obtain immediately for any fixed x, real or complex, 

(3.5) erfc = 
e/ 

i) e2nx (1 
(n oo 

). 

Hence, 
en rx ( 

/-- erc e-2 -\2 
nx (n oo) 

jn erfc (-x) 

which proves (3.4). 
4. With fn , gn definied by (3.1) and (3.3) we have for the quantities pn in (2.11) 

( n-1 erfex 
(4.1) pn = (_1)n in-1 erfc (-x) (n = 0, 1, 2, *.*). 

It is shown in this section that for any fixed x > 0 the sequence P{ P} is mono- 
tonically decreasing, i.e., 

(4.2) Pn?i = erfc x i1 erfc (-x) < 1 (n > 0). 
Pn in- erfc x jfl erfc (-X) 

Inequality (4.2) is obvious if n = 0 and, by (1.4), equivalent to 

/ (t - x)n-1e`2 dt f (s + x)ne-, ds 
x ~~~~~~~x 

- /7 (t- X)n e-2 dt f (s + X)n1 e82 ds > 0 

if n > 0. By introducing new variables of integration, t = u + x, s = v - x, and 
writing the left-hand side as a double integral, one obtains 

(4.3) ff un-1vn-1(v - u)e-(U+X)2-(V-)2 du dv > 0, 

where Q denotes the first quadrant u > 0, v > 0. Let Qi, Q2 denote the regions 

Q : 0 < u < v, Q2: 0 < v < u. 
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Interchanging variables of integration gives 

ff - 
1- 1 

(v - u)e (u+x)2- (v-)2 d dv =nff u 
n1 

(v - u)e e-? (X)2V(u-X)2 du dv. 

Therefore (4.3) is equivalent to 

ff n- 
vn1 (v - U)[e--(U+X)2-(V-X)2 e-(v+X)2-(u-X)2] du dv > 0. 

Now, un-1vn-1(v - u) > 0 in Q, , and the same is true for the expression in brackets, 
since 

-(u + x)2- (v _ x)2 > -(v + x)2- (u-x)2 for u < v. 

This proves (4.3), and thus (4.2). 
5. We are now in a position to estimate v such that for any given integer p, 

I (fn(v) -fn)/fn I < 10 ' for n = 0, 1, , N + 1. 

Here, fn(j) denotes the approximations to f = in-' erfc x obtained by the procedure 
of Section 2. 

Since, by (2.12), 

| (f 
(v) - fn) /fn < Pv| (1 + I Pn |') 

+ 
o(P 2), 

and since I Pn 1 
1 increases with n, by (4.2), it is sufficient to choose v such that 

(5.1) | Pp I ( 1 + I PN+1 l) - 10. 

From (3.5) and (4.1) we have 

(5.2) +1 = e-2,/nx [1 + 0 

Assuming N large enough to neglect the 0-term in (5.2) for n > N, the requirement 
(5.1) may be simplified to 

e-2\/2vx < 10 
1 + e2\/2Nx 

or even to 

(5.3) e-2Vx < 10 
2e2V\ix' 

having made the right-hand bound smaller. Inequality (5.3) yields 

> (2V2Nx + pln 10 + ln2\2 
v 2V>x / 

which gives us the desired estimate of '. 

Oak Ridge National Laboratory 
Oak Ridge, Tennessee 
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